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Abstract—Modern web applications rely heavily on dynamic
content, i.e., page updates made by the browser using an
XMLHttpRequest and more recently the JavaScript Fetch API.
These requests are often made on behalf of user actions, such as
typing on the keyboard or pointing at an HTML element. As a
result, the timings of the user’s actions are strongly correlated
with the timings of packets that carry these events. In this work,
we examine several dynamic web applications and the ability to
measure human behavior in encrypted network traffic by using
deep temporal features. Our approach relies on the ability to
accurately detect a subset of packets that correspond to user
actions. Leveraging recent work in keystroke dynamics, we show
that user identification can be performed with modest accuracy
utilizing the packet timings induced by a user typing into a search
engine. While this tool could be used by forensic investigators to
perform target identification among encrypted network traffic,
it also raises a privacy concern in which an on-path remote
adversary able to detect these packets may infer user behaviors.

I. INTRODUCTION

Web applications that process sensitive information have
become prevalent. Many of these applications operate in
real time, with components split between the client and the
server. Consequently, side-channel attacks across the web are
getting more attention [1]. Encrypted web traffic can reveal
surprisingly substantial information that threatens user privacy.
User inputs are exposed primarily through packet timing and
size side-channels. This leads to serious security challenges
such as device/website fingerprinting [2], [3], [4], [5], user
identification [6], content extraction [7], and session hijacking
[8]. Some of these issues arise from the use of Asynchronous
JavaScript and XML (Ajax) [9]. Ajax enables browsers to send
and receive data from the server after the initial web page has
been loaded. Often times, this traffic takes on the form of a
series of much smaller requests in response to user input.

Modern web applications rely heavily on dynamic content,
i.e., page updates made by the browser using an XMLHttpRe-
quest and more recently the JavaScript Fetch API. These
requests are often made on behalf of user actions, such as
typing on the keyboard or clicking on HTML element. It is
common practice for websites that accept text input within
a form to provide an ”autocomplete” feature that suggests
a pre-populated list of values based on previous aggregate
user inputs and the content of web pages [10]. For example,
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many search engines contain an autocomplete graphical user
interface (GUI) widget that generates traffic in response to a
single keystroke or mouse click. This traffic contains features
that may reveal each state transition within the application.
As a result, a remote observer can infer sensitive user inputs
or server responses based on time or size properties of the
Ajax requests, for example by associating the size of an
autocomplete server response with individual characters to
recover a user’s search query [1].

In this work, we examine the extent to which remote user
identification of dynamic web traffic can be performed via
deep temporal features. This is possible because the user’s
keystroke dynamics are revealed by the temporal patterns
of Ajax request packets. We demonstrate that these packets,
triggered by keyboard input, can be accurately detected within
a TCP connection maintained by the browser, and as more
Ajax packets are gathered the ability to identify individual
users increases substantially. We propose a system that can
automatically detect these packets and either identify or verify
the user based on packet timings. Ajax packet detection
is performed by taking the longest increasing subsequence
(LIS) of packet sizes within a TCP connection, as packet
size gradually increases with each subsequent request. Recent
advances in keystroke dynamics are leveraged to perform
user identification [11]. We utilize a recurrent neural net-
work (RNN) trained with triplet loss to extract deep tem-
poral features from the sequence of detected packet timings.
Considering the encrypted traffic generated by a user typing
into a search engine, we show that user identification can
be performed with accuracy that rivals previous generation
keystroke dynamics systems and verification accuracy nears
the performance attained with timestamps measured on the
host. To summarize, our contributions are:

• We discuss the characteristics of modern dynamic web
traffic and how this is often correlated with user behavior.

• We develop a method to detect Ajax packets in search
engines and describe a general technique that can be used
to match Ajax packets to user input events.

• Using the detected packets, we perform user identification
and verification with up to 500 users.

• Through analysis of several websites and an ablation
study, we propose several mitigations that do not severely
impact the performance of the website.



The rest of the paper is organized as follows: Section II
briefly reviews background and related works to our approach,
including dynamic web traffic, remote side-channel attacks,
and keystroke biometrics. Section III describes our methodol-
ogy in detail, including the threat model, packet detection, and
user identification. Section IV summarizes the results achieved
using our approach. Section V discusses the results in the
context of both forensic applications and privacy implications.
Finally, Section VI concludes the paper by proposing several
mitigations and identifying areas of future work.

II. BACKGROUND AND RELATED WORK

A. Dynamic web traffic

Web traffic can be analyzed through either deep packet
inspection [12] or header-based features [13], [14]. Header-
based traffic analysis is increasingly used and has become
more relevant to user privacy with the growing usage of strong
encryption that makes content-based traffic analysis difficult
[15]. Features derived from packet headers, such as inter-
arrival time and payload size, may reveal specific individual
application functionality (e.g., website fingerprinting [16]) as
well as user and device behavior. Thus, it is worthwhile to
investigate header-based features in classifying dynamic web
traffic.

Web browsers are the primary tool through which most
Internet users access web servers. Modern web browsers (i.e.,
Google Chrome, Mozilla Firefox, Microsoft Edge, Apple Sa-
fari) provide a JavaScript application programming interfaces
(API) that enables the browser to make HTTP requests to
get or update page resources after a page has loaded. These
web APIs are essential for websites that require asynchronous
processing of dynamic content such as autocomplete, chat
applications, and mapping services.

As an example, search engines provide an autocomplete
feature that allows users to view recommended suggestions
while typing search queries [17]. Partially completed search
queries typed by the user on the client browser are used to
predict what the user might search for, as suggestions are up-
dated for each printable character [9]. Ajax provides a means
of implementing asynchronous client-server communication to
send the partially completed query to the server and retrieve
the list of search suggestions before the form is submitted. This
web traffic carries the user input to the server and updates to
the document object model (DOM) on the client.

Ajax broadly refers to the ability of a web page to make
asynchronous updates. The API utilized and way in which
Ajax is implemented varies across websites. The most widely
used Ajax APIs are XMLHttpRequest (XHR) objects and the
more recent Fetch API. XHR is an event-based model that
manages inputs, outputs, and states within an object. Events
are generated separately upon each state change of a request.
This approach differs from Promise-based asynchronous pro-
gramming implemented by the Fetch API [18]. A Promise is
an object embedded in JavaScript intended to simplify asyn-
chronous communication compared to the callback functions
in XHR. The Fetch API is optimized for HTTP by using three

interfaces: headers, request, and response, which correspond
to the core components of HTTP. However, Fetch implements
only a subset of XHR capabilities. Most recent browsers are
compatible with both XHR and Fetch APIs.

Ajax requests that are invoked by user input (mouse click,
keypress, etc.) may reveal the timing of the user’s action.
The extent to which packet times are correlated with user
actions depends on how much variability there is in the
latency between the action and the packet being sent over
the wire. There may be many factors involved, such as the
client hardware, system load, and network congestion. Most
importantly, however, is the way in which the web page
processes the input event and generates an Ajax request.
The event processing model describes the way in which the
browser detects input events before making any request [19].

There are generally two kinds of processing models: call-
back and polling. In a callback model, Ajax requests are
made within some function registered as a callback to an
input event, such as a keydown or keyup DOM event. In
comparison, a polling model checks for new input at regular
intervals and invokes an Ajax request when new input is
detected. We investigated which event processing model is
currently used in several search engines by setting breakpoints
within the browser and tracing the path of keydown and
keyup events. We found that Google Search uses a callback
registered to keydown events, consistent with prior work and
that DuckDuckGo Search also uses a callback registered to
keydown events, which differs from prior work in which a
callback was registered to keyup events [19].

B. Remote side-channel attacks

Side-channel attacks have been widely studied using a
variety of information sources, such as timing, power anal-
ysis, electromagnetic, and acoustic [20]. Remote side-channel
attacks, or those that can be carried out over a network, have
become increasingly important [1]. This kind of attack gener-
ally utilizes header-based traffic analysis to extract information
such as packet inter-arrival timings or packet sizes.

Chen et al. [1] reviewed the status and direction of side-
channel leaks in web applications considering both upstream
and downstream traffic. The root causes of many side-channel
vulnerabilities examined are based on fundamental design fea-
tures of web applications: frequent small interactions, stateful
communication, and diversity in the contents exchanged during
state transitions. Chen et al. examined actual information leaks
by constructing an attack on several high-profile web applica-
tions, including health, tax, investment, and search engines.
Unique “web flow vectors” were obtained by clicking through
different page elements. The user’s actions are reconstructed
by an attacker who identifies the packet sizes that match server
responses, which may carry suggestion lists and other page
updates. While this approach detects Ajax events from traffic
emitted by the server, our approach considers only traffic
emitted by the client.

Meng et al. [17] investigated the feasibility of recov-
ering personalized keystroke timing information by using



Google Suggestions (GS), one example of an interactive rich
JavaScript application. They analyzed the timing side-channel
of GS by reverse-engineering the communication model from
obfuscated JavaScript code. In their experiment, 11 partici-
pants were asked to install a plugin on their browser to capture
the keystroke timings of GS queries and their keystrokes were
collected. For each key pair with at least 20 samples, the mean
inter-keystroke timing was determined with an error of less
than 20% from their experiments. This result suggests that
the timing of the queries over the network can reconstruct a
user’s typing pattern. In this work, we demonstrate that typing
speed can be recovered with much higher accuracy on modern
search engines, and that modest user identification accuracy is
achieved with up to 500 users.

The automated detection of side-channel leaks expands
to side-channel attacks that threaten user privacy. Song et
al. [21] studied timing attacks on Secure Shell (SSH) which
is designed to provide a secure channel between two hosts.
Taking advantage of the fact that encrypted SSH packets leak
the size of payload and inter-keystroke timing information,
they recovered users’ typing patterns from the network traffic
and developed a hidden Markov model (HMM) to predict key
sequences from the inter-packet timings. The tool developed as
part of this attack, Herbivore, first demonstrated the possibility
of remote keystroke timing attacks with network traffic.

Recent work has been conducted on web search engines to
examine the feasibility of keystroke timing attacks on HTTP
traffic [19] later extending this to a complete attack [7]. For
the experiment, 1,000 queries were collected on each of five
different search engines (Google, Bing, DuckDuckGo, Baidu,
and Yandex) that implement autocomplete. The behavior of
each website was characterized in the perspective of packet
size, event processing model, event censoring, and information
gain. For some of the search engines examined, keystrokes can
be detected based on the increasing pattern of packet sizes,
and the key-press time intervals are faithfully preserved in
the packet inter-arrival times. The vulnerability of websites
that generate dynamic traffic varies significantly based on the
accuracy of Ajax packet detection.

C. Keystroke biometrics

As a form of behavioral biometrics, keystroke dynamics has
been regarded as one of the most efficient and economical
means of user identification [22]. However, the accuracy
of keystroke biometric systems struggles to compete with
traditional biometrics, such as face and fingerprint. Only
recently have keystroke biometric systems been able to scale
up to thousands of users and approach accuracy needed for
wide usage deployment [11]. In this work, our method of
user identification is based on the typing pattern of users
as seen through Ajax request packets. Idiosyncratic typing
behaviors, including the temporal dynamics observed through
the keyboard, are observed among Ajax packtes and enable
user identification.

Keystroke biometric systems are largely categorized as
either fixed-text and free-text. Fixed-text systems are those in

which a pre-defined string is typed, such as a username, pass-
word, or PIN. In comparison, free-text systems are designed to
identify or verify users typing any text. Prior works on free-text
systems utilize timing features based on the interval between
key-press and release events (i.e., the duration a key is held
down for), as well as the latency between consecutive key-
presses (i.e., the flight time between successive keystrokes). In
many works, these features are conditioned either on particular
keys or key groups [22], [23], [11].

Acien et al. [11] developed a user authentication system,
TypeNet, for free-text keystrokes based on a Siamese RNN
architecture. This approach was effective when scaling up to
100k users, achieving close to a 5% error rate on average.
It outperforms previous state-of-the-art algorithms and ap-
proaches the performance of fixed-text systems. We leverage a
variant of the TypeNet model developed in [11] and show that
user identification can be performed by utilizing the packet
timings induced by a user typing into a search engine. We
extend the work of [11] by discretizing key-press time intervals
through rounding to reduce noise introduced by packet jitter,
introduce an embedding layer in the model, and train the
model using triplet loss with online triplet mining.

Recently, Whiskerd et al. [24] examined the ability to
utilize keystroke biometrics on web search engine traffic from
desktop computers and mobile devices. They conducted an
experiment in two scenarios: on encrypted network traffic
by using packet metadata, and with decrypted traffic through
an HTTPS proxy (mitmproxy). They used a short fixed-text
dataset consisting of 7-30 keystrokes per sample and leveraged
only packet timing for user identification. The test cases
showed that it is feasible to distinguish users in a small
group using conventional machine learning classifiers (naive
Bayes and k-nearest neighbor). The identification performance
resulted in error rates of 5-24% depending on the scenario.
Compared to this, we leverage a much larger group of 500
users and up to 300 keystrokes of free-text aggregated over
several search queries that occur within the same TCP con-
nection.

Our approach differs from these works in three important
ways. 1) We utilize only the timing of Ajax packets, which
correspond to key-press timings; therefore, duration features
cannot be taken because key-release timings are not available.
2) The key name is not known, and the only information
available is the sequence of Ajax packet timings; therefore,
timings cannot be conditioned on different keys. This scenario
is similar to [25], which makes use of a sequence of key-
press timings to identify users. 3) Our sequence-based feature
extraction model can be leveraged for both user identification
and verification scenarios.

III. METHODOLOGY

A. Threat model

We assume a remote passive observer that can eavesdrop on
encrypted network traffic from the victim accessing a website
with dynamic content. The traffic includes packets emitted by
the victim typing search queries as well as other background



traffic. We assume that the TCP connection over which Ajax
requests are sent is maintained over the course of several
search queries, which we verified to be the case for all major
web browsers. The observer can detect the Ajax packets by
inferring the patterns of packet size among TLS traffic.

Detecting Ajax packets over a TCP connection rather than
individual page loads enables an observer to acquire key-
press timings that potentially span multiple search queries.
This obviates the need to detect individual page loads, which
is difficult in practice [26], [5]. Therefore, we assume that
the victim does not close and reopen the browser while
entering several consecutive search queries. In this case, the
browser will utilize the same TCP connection. This concept
is based on the HTTP persistent connection, which allows
multiple requests/responses to be sent over a single TCP
connection rather than creating a new connection for each
request. The HTTP/2 protocol allows multiple concurrent
requests/responses to be multiplexed within a single TCP
connection [27]. HTTP/2 multiplexing is supported by most
modern browsers including Google Chrome that we used for
the experiment. The observer attempts to identify users by
first detecting Ajax packets within a TCP connection and then
extracting a vector of temporal features from the Ajax packet
timings. These features are relatively unique to individual
users, enabling the observer to perform user identification, i.e.,
link the identities of two different TCP connections.

B. Data collection

We used a subset of a large-scale dataset of typing behavior
containing over 136 million keystrokes that were collected
from 168,000 users observed by Aalto University during three
months [28]. The size of the Aalto dataset is approximately
5GB, and the sentences typed by users ranged from 15 to about
150 keystrokes, including Space and Backspace. The sentences
were randomly chosen from the Enron mobile email corpus
and English Gigaword Newswire corpus. Each user typed 15
sentences totalling 810 characters on average. The dataset
contains a wide variety of typing speeds, ranging from 1.5
to 22 keystrokes per second. From this dataset, we randomly
chose 500 users with 15 sessions and at least 600 keystrokes
total. This subset of keystrokes is replayed in real time using
a setup that mimics a user typing a search query in a browser.
Data from the remaining users with at least 600 keystrokes
each are used to train a model that extracts deep temporal
features from a sequence of timestamps. This model is then
applied to the 500 independent users. Note that we excluded
function keys, such as Ctrl and Alt, since these do not result
in Ajax requests and can unintentionally invoke keyboard
shortcuts.

The process for data collection is summarized in Figure 1.
Data collection was performed over approximately five days on
an Intel NUC10FNK running Ubuntu 20.04 LTS. We replayed
keystrokes from the 500 user dataset by emitting key-press and
key-release events in real time through the uinput module [29].
The uinput module is a kernel module that enables the creation
of virtual devices and emulating device events from user space

Fig. 1: Process to replay keystrokes and capture network traffic
from dynamic websites.

by writing to the /dev/uinput device. These events trigger
interrupts as if they were generated by an actual keyboard and
propagate to the application with the input focus, which is a
web browser in our case. We used Selenium Driver for the au-
tomatic control of Google Chrome (v.87). For each session, the
web browser was opened and https://www.google.com
was loaded by the browser through Selenium Driver. After
loading the web page, the network capture was started by
running TShark in the background. TShark created *.pcap
files which included background traffic in addition to the Ajax
packets generated during the capture. A two-second delay
occurred before replaying keystrokes, and each session was
saved as a separate pcap file after finishing the replay. Packet
timestamps in epoch format and TCP segment lengths were
obtained from each pcap file. The TCP segment lengths were
used for Ajax packet detection and the timestamps for user
identification. Because we are interested only in upstream
traffic, we filter based on the source client IP address. Without
loss of generality, additional background traffic is omitted
including TCP ACKs and HTTP/2 PING packets, both of
which have a distinct segment length. In total, we record traffic
from 15,000 search queries (500 users × 15 sessions × 2
browsers).

C. Ajax packet detection

Ajax packet detection is performed over an entire TCP
session which enables aggregating keystrokes from multiple
search queries. We use the approach of detecting the Ajax
packets through the patterns of packet sizes: if the packet
size increases cumulatively according to the user’s typing on
the website, the Ajax packets can be detected by finding
the longest increasing subsequence (LIS) of packet sizes
within the TCP connection since background traffic generally
does not exhibit this behavior. This approach has previously
achieved near-perfect Ajax packet detection accuracy (F-score
> 0.99) without the use of Delete or Backspace keys [19].

To measure the detection accuracy of the LIS approach and
check the ground truth, we decrypt the TLS connection (all
traffic collected is HTTPS) and inspect the payloads. TLS
packets can be decrypted by using a pre-master secret key /
RSA key or through a transparent TLS proxy. On the client, we
set the SSLKEYLOGFILE environment variable before each
capture which logs each TLS session key to a file. Note that
this method does not work with all cipher suites and in some
cases we had to disable Diffie Hellman-based cipher suites to
force an RSA-based connection.



Fig. 2: A graphical description of Dynamic Time Warping

In addition to payload inspection, we also develop our own
method to evaluate ground truth without inspecting payloads.
The way to compare the timings between keystrokes and
packets entails utilizing the concept of sequence alignment,
which is a way of arranging the timestamp sequences (host vs
packet) to identify regions of similarity. We adapted dynamic
time warping (DTW) that is used for an optimal alignment
between two temporal sequences which may vary in length.
DTW provides a non-linear alignment as well as the similarity
between two time series. The DTW approach can be useful to
assess whether the website leaks the timings of input events
without performing payload inspection.

Figure 2 shows an example of DTW alignment: (left) is the
general depiction of aligning two sequences, and (right) shows
the optimal warping path between two time-series with the
minimum cost. Through DTW alignment between key-press
timings and packets on Google Search, we determine that the
average delay between matched events in each sequence is
from 10ms to 15ms, i.e., packets are emitted roughly 10ms
after key press events. We use this approach as another source
of ground truth to evaluate the LIS approach and find that LIS
compared to DTW has over 90% true positive rate in detection.
Inspecting failure cases reveals that errors arise when typing
speed exceeds a threshold and multiple characters are merged
into a single Ajax packet.

D. User identification

1) Feature extraction: We build and train a recurrent neural
network (RNN) that extracts a vector of deep temporal features
from a sequence of timestamps. An RNN is suitable for
temporal data, such as a time series, because the inputs can
vary in length. This makes it suitable for training the dataset
we used that consists of free-text keystrokes.

The intervals between packet timings are first computed.
Given a sequence of Ajax packet timestamps in millisecond
resolution ti for 0 ≤ i ≤ N+1, the sequence of time intervals
is taken as

τi = ti+1 − ti (1)

where the sequence τ has length N . This requires N + 1
timestamps. Note that if the Ajax packets corresponded exactly
to key-press times, τ would represent the sequence of key-
press latencies, i.e., time between successive keydown events.

TABLE I: LSTM network architecture.

Layer Output Shape Num. Params
Input N × 1 0

Embedding N × 16 6416
Batch Norm N × 16 64

LSTM N × 128 74240
Dropout (0.5) N × 128 0
Batch Norm N × 128 512

LSTM 128 131584
L2 Norm 128 0

Because of packet jitter, which may result from variations
in event processing on the host, the intervals τ do not match
exactly the key-press intervals that would be obtained on the
host. To mitigate this, we quantize τ by rounding the intervals
to the nearest increment of b ms, forming the sequence of
discrete tokens:

si =
⌊τi
b
+ 0.5

⌋
(2)

where b = 5ms. We choose b that is large enough to eliminate
most of the jitter introduced by the web page. This allows for
some variation in the Ajax packet timings such that packet
time intervals will be mapped to the same interval on the
host with minor noise introduced. We additionally cap τi at a
maximum of 2 seconds. There are two reasons why we set the
maximum of 2 seconds for the tokens. First, most keystroke
time intervals are below 2 seconds. Faster typists typically also
demonstrate more consistent behavior than slower typists; thus
larger intervals are less indicative of user identity. Second,
the collected data has approximately 2 seconds between each
search query since we combined Ajax packets from several
consecutive queries. As a result, the tokens si are bounded,
0 ≤ si ≤ 401 with b = 5ms.

The sequence s is provided as input to a function f that
outputs a fixed-length vector

f(s) = x (3)

where x is an L2 normalized feature vector of length 128.
Distances between the embedded vectors form the basis for
user identification and verification.

2) LSTM architecture and triplet training: The function f
is a RNN based on the TypeNet model developed in [11]
which contains two stacked long short-term memory (LSTM)
layers with batch normalization before each layer and dropout
between the LSTM layers. Because we tokenize the intervals,
we introduce an embedding layer as the first layer of the
network. An embedding layer uses the integers in s to index a
dense matrix, a technique commonly used in natural language
processing where dictionary size can grow to hundreds or
thousands of tokens. We found the embedding layer to be
essential to obtaining identification accuracy with the packet
timings that approaches that of using the timings measured on
the host. The structure of our model is shown in Table I.

The model is trained using triplet loss, a method that learns
to rank distances between samples belonging to the same or
different classes [30]. Triplet loss is effective when the number
of samples per class is small [31]. In our case, we assume



there are only two samples per class, which represent two
separate TCP connections. During each batch of training, the
model is presented with triplets, each of which include an
anchor sample, a positive sample belonging to the same class
as the anchor, and a negative sample belonging to a different
class than the anchor. The triplet loss function forces the
anchor-positive distance to be smaller than the anchor-negative
distance.

Model training is performed with approximately 117k users
in the Aalto dataset that contain at least 600 keystrokes. We
evaluate the model with data from the 500 users held out for
traffic capture. Because this model takes as input a single time
series, only key-press timings are utilized for training. This
differs from previous work on keystroke biometric systems
in which both key-press and key-release timings are utilized.
We train the model for 150 epochs with adaptive moment
estimation (Adam) optimization, 256 batch size, and online
semi-hard triplet mining [30].

3) Classification: The embedded vectors produced by the
model are compared using Euclidean distance, and both user
identification and verification are performed with only a single
template sample, i.e., one-shot learning scenario. We consider
two different metrics for evaluation: user identification and
user verification. Identification accuracy is measured by rank-
1, rank-5, and rank-50 classification accuracy. In user verifica-
tion, the goal is to verify that a given sequence of Ajax packets
belongs to a particular user identity. Verification performance
is measured by balanced accuracy, i.e., 1 - the equal error
rate (EER), the point at which the rates of false positive and
false negative are equal on the receiver operating characteristic
(ROC) curve obtained by varying a distance threshold d.

IV. RESULTS

A. Event packet detection

Typing a search query results in Ajax requests containing
a URL parameter that gradually increases in length, which
enables LIS detection to achieve a high accuracy. However, we
observed that LIS detection can fail under several conditions:
background packets with similar size (false positive), Ajax
packets with a different size (false negative), and multiple key-
press events buffered into a single Ajax request (a kind of
false negative). After typing about 15 characters on Google
Search, the Ajax packets increase by about 20 to 25 bytes.
This is due to an additional parameter ”gs mss” added to the
request URL [19]. Next, we found on several websites that
implement dynamic content that multiple keys are merged into
a single packet when the typing speed exceeds a threshold. The
speed at which this occurs differs per website: on DuckDuckGo
Search (implements an autocomplete feature similar to Google
Search) and Google Docs (implements an autosave feature
triggered by keydown events), multiple keys are merged into
a single request when keystrokes occur within less than 300
ms of each other. Google Search has a comparatively lower
threshold resulting in fewer false negatives.

Finally, because we did not exclude Backspace and Delete
keys from our data capture, Ajax packet size could potentially

Fig. 3: Query scenarios in diverse user behavior: slow typing
(user1) vs fast typing with error correction (user2)

TABLE II: Summary of Ajax packet detection performance.

Method Truth Accuracy FPR FNR
LIS Payload 96.0 1.6 6.5
LIS DTW 96.9 0.38 5.9

DTW Payload 93.0 4.0 10.1

decrease when edits are made to a partially completed query.
Figure 3 compares typical packet size growth (user1) with fast
typing and error correction (user2), showing that Ajax packet
sizes do not always follow a steady increase in size. Therefore,
we set the increasing range of LIS for detection as -5 to 20
since we should consider the additional parameter as well as
error correction. These parameters represent the smallest and
largest change, respectively, that subsequences can undergo in
Ajax packet sizes. This makes the detection algorithm a bit
more constrained than LIS, and a general and robust method
of Ajax packet detection remains an item for future work.

We compare the relative performance of each detection
method: LIS, DTW alignment, and payload inspection. The
accuracy, false positive rate (FPR) and false negative rate
(FNR) are reported for LIS using both payload inspection and
DTW alignment as a reference (ground truth), as well as DTW
alignment using payload inspection as a reference. Table II
summarizes these results.

The LIS method achieves 96.0% accuracy with 6.5% FNR
on average, which is high enough to support user identification
by using the temporal features of detected packets. However,
the result did not show perfect detection due to the various
issues mentioned earlier, because of background packets with
similar sizes and some exceptions of Ajax packets with a
different size. DTW as another source of ground truth suffers
from different issues, such as packet jitter making detection
more difficult, since it is based only on timing features.

B. User identification and verification

User identification and verification are performed by taking
the Euclidean distance between the query sample feature
vector and each of the 500 user profiles. We evaluate user
identification performance based on the rank-N classification
accuracy, for N ∈ {1, 5, 50}. Rank-1 accuracy represents the
rate of unequivocally matching a query to that of the correct
user. Rank-5 and rank-50 accuracies represent the rate of
placing the correct user’s profile among the top 1% (5 profiles)
and 10% (50 profiles), respectively, when comparing to the



TABLE III: Summary of user identification (rank-N classi-
fication accuracy) and verification (balanced accuracy) per-
formances. Packet timings=the model developed in this work
using only Ajax packet time intervals; Press timings=key-press
times obtained on the host, which would match packet timings
with perfect Ajax packet detection and no timing jitter; All
timings=key-press and key-release timings on the host using
a TypeNet model.

Features Identification Accuracy Verification
Rank-1 Rank-5 Rank-50 Accuracy

All timings (on host) 87.4 98.2 99.4 98.2
Press timings (on host) 59.0 88.6 99.8 97.8

Packet timings 49.0 77.8 98.6 96.0
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Fig. 4: Identification (left) and verification (right) accuracy as
the number of users is scaled up.

query to the 500 user profiles. User verification performance
is evaluated by balanced accuracy.

We compare user identification and verification performance
with packet timings obtained from detected Ajax packets to
the key-press timings as measured on the host. This scenario
reflects the performance that could be achieved with perfect
Ajax packet detection and no additional noise introduced
by packet timings. We additionally evaluate the performance
obtained by the TypeNet model developed in [11] which
utilizes both key-press and key-release timings as well as
key codes. Note that all timings scenario leverages keystroke
temporal features on the host, not any features of Ajax packets.

Table III summarizes user identification and verification
performance for three different scenarios. In all scenarios there
are 500 users with 1 training sample (one-shot learning) and
1 testing sample, each comprised of 300 keystrokes. Rank-
1 identification accuracy with packet timings is 49%, while
using timings on the host is 59%. The drop in performance
can be attributed to the noise introduced by packet timings in
addition to imperfect Ajax packet detection. However, nearly
perfect rank-50 identification accuracy is achieved, i.e., the set
of user profiles can be accurately reduced by up to 90%.

Figure 4 summarizes identification and verification accuracy
as the number of users is scaled up from 100 to 500 for
both the timings on host and packet timings scenarios. While
identification accuracy steadily declines with the additional
users, verification performance does not significantly increase
which is consistent with the results in [11].

Aggregating several hundred Ajax packet timings is key to
accurate user identification/verification. We scaled the size of

50 100 150 200 250 300
Detected events

0

20

40

60

80

100

Id
en

tif
ica

tio
n 

ac
cu

ra
cy

 (%
)

Rank-1
Rank-5
Rank-50

(a)

0 10 20 30 40 50 60 70 80 90
Detection FNR (%)

0

20

40

60

80

100

Id
en

tif
ica

tio
n 

ac
cu

ra
cy

 (%
) Rank-1

Rank-5
Rank-50

(b)

50 100 150 200 250 300
Detected events

75

80

85

90

95

Ve
rif

ica
tio

n 
ac

cu
ra

cy
 (%

)

Host timings
Packet timings

(c)

0 20 40 60 80
Detection FNR (%)

50

60

70

80

90

100

Ve
rif

ica
tio

n 
ac

cu
ra

cy
 (%

)

Host timings
Packet timings

(d)

Fig. 5: Identification accuracy vs sample length (a) and detec-
tion rate (b), and Verification accuracy vs sample length (c)
and detection rate (d).

each sample (both training and testing) from 50 packets to
300 packets, shown in Figure 5. Rank-1 identification accuracy
steadily increases with the longer sample lengths, suggesting
that higher accuracy could be obtained if more data were
available. Likewise, user identification largely depends on a
low FNR in detecting Ajax packets. This is shown in Figure
5 (b), where we evaluate accuracy as the FNR of Ajax packet
detection increases. Rank-1 identification accuracy is halved
at approximately 25% Ajax packet FNR.

Verification accuracy decreases with the shorter sample
lengths by about 75%, which is a similar result of the higher
identification accuracy with the longer sample lengths, as
described in Figure 5 (c). When varying Ajax packet detection
FNR, verification accuracy declines to about 50% (chance
accuracy for binary classification).

V. DISCUSSION

For Ajax packet detection, a more general and robust
method is needed. This requires control of several different
variables when analyzing the network traffic. Depending on
the network access technology that users connect to, the type
of devices and browsers they use, and whether the user logged
in to account on the website, the size of packets or the
generated background packets can vary. Other variables, such
as packet jitter and noise related to temporal features, can also
affect Ajax packet detection. Thus the accuracy of Ajax packet
detection depends on both temporal noise and differences in
packet size. Extending Ajax packet detection to a real-world
environment remains an item for future work.

Although identification and verification accuracy using tim-
ings only on the host is higher than packet timings, several



results stand out and warrant further examination. In user
identification, Rank-50 accuracy of all timings is lower than
that of key-press timings on the host. This is not a significant
difference and may be attributed to model variance, i.e.,
differences in model performance based on different initial
parameters, dataset shuffling, etc. In user verification, the
accuracy is not consistently proportional to the number of
users. We can observe that accuracy fluctuates, also likely
attributed to differences among users as a single new user is
added to the population. However, verification accuracy tends
to stabilize with a larger number of users, consistent with [11].

A. Forensic applications

Identifying and locating cyber adversaries has become
increasingly difficult due to anonymizing technologies. A
forensic investigator aiming to locate a particular target or
verify the presence of a specific adversary faces numerous
challenges when that individual takes measures to hide their
identity or obfuscate geolocation (e.g., by using a VPN or
other form of proxy). Relying on user behavioral metrics as
observed in network traffic could form the basis for locating
a target or attributing two different TCP sessions to the same
user, although it is not clear how and if this technique would
support litigation.

The general technique we described may also be applica-
ble to scenarios beyond the on-path observer described. We
assumed that an observer is able to capture HTTPS traffic,
i.e., HTTP over TLS, which encrypts at the transport layer
and leaves TCP/IP headers exposed. However, there may be
scenarios where an observer has access to traffic encrypted at
the link layer, e.g., using the WPA2 (Wi-Fi Protected Access
II, part of the 802.11i standard). In this case, TCP/IP headers
are encrypted, but packet sizes are still exposed. Therefore,
a size-based detection could still be performed, albeit on all
the traffic generated by a particular device (based on MAC
address) rather than a particular TCP connection. The LIS
method described could then still be utilized as we have found
the presence of background traffic to have little effect on Ajax
packet detection accuracy.

B. Privacy implications

Like other biometric modalities, e.g., face recognition and
gait analysis, the ability to identify users among encrypted
web traffic can reduce user privacy on the Internet. User
identification can be leveraged as an intermediate goal to
achieve better personalization or target identification [32].
Behavior information can be combined with other tools to
enhance performance, especially to identify/verify users on a
large scale. There are several privacy implications from an
adversarial point of view.

First, we consider casual users who access the Internet
through a public or untrusted network. An adversary who
observes the dynamic network traffic can analyze user behav-
iors by detecting Ajax packets, and subsequently track users.
This form of tracking users through behavioral patterns is
more more difficult to evade since it does not need explicit

tracking techniques, such as HTTP cookies, and has come
under increased scrutiny in recent years [33], [34].

In addition to the causal user, there are risks to privacy-
conscious users who take extra measures to conceal their
identity. Users who connect to the Internet through a VPN are
at risk of leaking their identity so long as the VPN does not
actively modify the packet sizes, which would make detection
more difficult, or timings, which would make identification
more difficult if detection were still possible. This is concern-
ing especially for users who seek to circumvent censorship,
such as in regimes where Internet access is strictly regulated.

Lastly, users on the Tor network, which is an overlay
network designed to obfuscate location [35], [36], may be
deprived of anonymity in the presence of dynamic web traffic
since Tor exposes the packet timing information. Ajax packet
detection would be more difficult due to the normalized packet
sizes on Tor but could potentially be performed through
temporal features rather than size features, e.g., by detecting
a page load and selecting packets that occur at about the
same rate as typing speed after that. This form of remote user
identification remains an item for future work.

VI. CONCLUSION

Dynamic web content triggered by user input events can
leak user identity in encrypted network traffic. Two key charac-
teristics make this possible: the ability to isolate Ajax packets
with high accuracy, presumably through a distinct pattern of
packet sizes, and the preservation of key-press latencies in
the Ajax packet time intervals. When surveying potential can-
didates that exhibit both characteristics, we examined several
websites in which this kind of attack becomes much more diffi-
cult primarily due to the lack of the second. These sites suggest
that a simple mitigation is to implement a timeout mechanism
for dynamic content triggered by user input, merging multiple
input events into a single Ajax request when the rate exceeds
some threshold. In this way, original key-press latencies are
not recoverable from the Ajax packets so long as typing speed
exceeds the timeout. An alternative mitigation would be to add
a random amount of padding or to normalize to the packet size
(e.g., fixed Tor cell size), making Ajax packet detection more
difficult. Packet size-based detection would largely fail as this
is based on increasing packet size. This mitigation will cause
decreased user identification capabilities since identification
relies on Ajax detection accuracy.

There are several promising directions for future work.
Detecting user behavior in dynamic web traffic depends on
accurately detecting Ajax packets, which remains a difficult
problem to solve generally. A characterization of web traffic
over a larger and more diverse set of websites and web appli-
cations also remains an ongoing area of research. Extensions
may be possible to web applications that provide diverse
functionalities such as emailing services, gaming services,
and chat applications. Among applications that have real-
time communication between the client and server, there is
potential for information leakage leaked about user identities
and actions through encrypted network traffic.
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